# TMDs and Saturation Physics

#### Bo-Wen Xiao

Institute of Particle Physics, Central China Normal University

January 7th, 2016 Electron Ion Collider Users Meeting



# Outline

- Introduction to TMDs and Saturation Physics
- 2 A Tale of Two Gluon Distributions
- 3 TMD evolution and small-x evolution
- Summary and Outlook



### Transverse Momentum Dependent parton distributions



- As compared to Feynman PDFs, TMDs contain extra degrees of freedom ( $k_{\perp}$ ).
- Unintegrated Gluon Distributions (UGDs) at small-x also depend on  $k_{\perp}$ .
- However, TMDs were mainly used in large-x and in the context of spin physics.
- TMDs (Sudakov type logarithms) and UGDs (Small-x logarithms) evolve differently.

## High density QCD

#### Saturation Phenomenon (Color Glass Condensate)



- Resummation of the  $\alpha_s \ln \frac{1}{x} \Rightarrow \text{BFKL equation.}$  (In DIS,  $x_{bj} = \frac{Q^2}{s}$ )
- When too many gluons squeezed in a confined hadron, gluons start to overlap and recombine ⇒ Non-linear dynamics ⇒ BK equation
- Introduce the saturation momentum  $Q_s(x)$  to separate the saturated dense regime  $x < 10^{-1}$  from the dilute regime.

# 3D Tomography of Proton

### The bigger picture:



- In small-x physics (color glass condensate), we use different objects: dipole, quadrupole.
- Dipole, quadrupole  $\Rightarrow$  Unintegrated Gluon Distributions (UGDs) at small-x.
- Impact parameter  $b_{\perp}$  dependent UGDs  $\Leftrightarrow$  gluon Wigner distributions? [Ji, 03]
- Can we measure the gluon Wigner distribution at small-x? Yes, we can!

## The exact connection between dipole amplitude and Wigner distribution

[Hatta, Xiao, Yuan, to appear] Definition of gluon Wigner distribution:

$$xW_g^T(x, \vec{q}_{\perp}; \vec{b}_{\perp}) = \int \frac{d\xi^{-} d^2 \xi_{\perp}}{(2\pi)^3 P^{+}} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-ixP^{+}\xi^{-} - iq_{\perp} \cdot \xi_{\perp}}$$

$$\times \left\langle P + \frac{\Delta_{\perp}}{2} \left| F^{+i} \left( \vec{b}_{\perp} + \frac{\xi}{2} \right) F^{+i} \left( \vec{b}_{\perp} - \frac{\xi}{2} \right) \right| P - \frac{\Delta_{\perp}}{2} \right\rangle,$$

Let us choose proper gauge link and define GTMD [Meissner, A. Metz and M. Schlegel, 09]

$$xG(x,q_{\perp},\Delta_{\perp}) \equiv \int d^2b_{\perp}e^{-i\Delta\cdot b_{\perp}}xW_g^T(x,\vec{q}_{\perp};\vec{b}_{\perp}).$$

• With one choice of gauge link (dipole like) and  $b_{\perp} = \frac{1}{2}(R_{\perp} + R'_{\perp})$ , we demonstrate

$$\begin{split} xG_{\mathrm{DP}}(x,q_{\perp},\Delta_{\perp}) & = & \frac{2N_c}{\alpha_s} \int \frac{d^2R_{\perp}d^2R'_{\perp}}{(2\pi)^4} e^{iq_{\perp}\cdot\left(R_{\perp}-R'_{\perp}\right)+i\frac{\Delta_{\perp}}{2}\cdot\left(R_{\perp}+R'_{\perp}\right)} \\ & \times & \left(\nabla_{R_{\perp}}\cdot\nabla_{R'_{\perp}}\right)\frac{1}{N_c} \left\langle \mathrm{Tr}\left[U\left(R_{\perp}\right)U^{\dagger}\left(R'_{\perp}\right)\right]\right\rangle_x. \end{split}$$

- $\int d^2 \Delta_{\perp} x G_{DP}(x, q_{\perp}, \Delta_{\perp}) \Rightarrow TMD; \int d^2 q_{\perp} x G_{DP}(x, q_{\perp}, \Delta_{\perp}) \Rightarrow GPD$  at small-x.
- Non-trivial angular correlation between  $\Delta_{\perp}$  and  $q_{\perp}$ . See also [Golec-Biernat, Stasto, 03]

## Probing 3D Tomography of Proton at small-x

#### Diffractive back-to-back dijet productions:



- Measure final state proton recoil  $\Delta_{\perp}$  as well as dijet momentum  $k_{1\perp}$  and  $k_{2\perp}$ .
- We can obtain  $xG_{DP}(x, q_{\perp}, \Delta_{\perp})$  directly since  $q_{\perp} \simeq P_{\perp} \equiv \frac{1}{2}(k_{2\perp} k_{1\perp})$ .
- By measuring  $\langle \cos 2 (\phi_{P_{\perp}} \phi_{\Delta_{\perp}}) \rangle$ , we can learn more about the low-x dynamics.
- WW Wigner (WWW) distribution can be also defined and measured.
- Linearly polarized Wigner distribution, etc. This is only the beginning.



### A Tale of Two Gluon Distributions<sup>1</sup>

In small-x physics, two gluon distributions are widely used: [Kharzeev, Kovchegov, Tuchin; 03] I. Weizsäcker Williams gluon distribution([Kovchegov, Mueller, 98] and MV model):

$$xG_{WW}(x,k_{\perp}) = \frac{S_{\perp}}{\pi^{2}\alpha_{s}} \frac{N_{c}^{2}-1}{N_{c}} \int \frac{d^{2}r_{\perp}}{(2\pi)^{2}} \frac{e^{-ik_{\perp} \cdot r_{\perp}}}{r_{\perp}^{2}} \left[1-e^{-\frac{r_{\perp}^{2}Q_{sg}^{2}}{4}}\right]$$

II. Color Dipole gluon distributions:

$$xG_{\mathrm{DP}}(x,k_{\perp}) = \frac{S_{\perp}N_c}{2\pi^2\alpha_s}k_{\perp}^2\int \frac{d^2r_{\perp}}{(2\pi)^2}e^{-ik_{\perp}\cdot r_{\perp}}e^{-\frac{r_{\perp}^2Q_{sq}^2}{4}} \quad \Leftarrow \quad \frac{1}{N_c}\mathrm{Tr}\left[U(r_{\perp})U^{\dagger}(0_{\perp})\right]$$





<sup>&</sup>lt;sup>1</sup>As far as I know, the title is due to Y. Kovchegov and C. Dickens.

#### A Tale of Two Gluon Distributions

In terms of operators (known from TMD physics [Bomhof, Mulders and Pijlman, 06]), two gauge invariant gluon definitions: [Dominguez, Marquet, Xiao and Yuan, 11] I. Weizsäcker Williams gluon distribution:

$$xG_{WW}(x,k_{\perp}) = 2 \int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-} - ik_{\perp} \cdot \xi_{\perp}} \text{Tr} \langle P|F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[+]\dagger}F^{+i}(0)\mathcal{U}^{[+]}|P\rangle.$$

#### II. Color Dipole gluon distributions:

$$xG_{\rm DP}(x,k_{\perp}) = 2 \int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-} - ik_{\perp} \cdot \xi_{\perp}} \operatorname{Tr} \langle P|F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[-]\dagger}F^{+i}(0)\mathcal{U}^{[+]}|P\rangle.$$



#### Remarks:

- The WW gluon distribution is the conventional gluon distributions.
- The dipole gluon distribution has no such interpretation.
- Two topologically different gauge invariant definitions.



### A Tale of Two Gluon Distributions

### [F. Dominguez, C. Marquet, Xiao and F. Yuan, 11]

I. Weizsäcker Williams gluon distribution

$$xG_{WW}(x,k_{\perp}) = \frac{2N_c}{\alpha_S} \int \frac{d^2R_{\perp}}{(2\pi)^2} \frac{d^2R'_{\perp}}{(2\pi)^2} e^{iq_{\perp} \cdot (R_{\perp} - R'_{\perp})} \times \frac{1}{N_c} \left\langle \operatorname{Tr}\left[i\partial_i U(R_{\perp})\right] U^{\dagger}(R'_{\perp}) \left[i\partial_i U(R'_{\perp})\right] U^{\dagger}(R_{\perp}) \right\rangle,$$

II. Color Dipole gluon distribution:

$$\begin{split} xG_{\mathrm{DP}}(x,k_{\perp}) & = & \frac{2N_c}{\alpha_s} \int \frac{d^2R_{\perp}d^2R_{\perp}'}{(2\pi)^4} e^{iq_{\perp} \cdot \left(R_{\perp} - R_{\perp}'\right)} \\ & \left(\nabla_{R_{\perp}} \cdot \nabla_{R_{\perp}'}\right) \frac{1}{N_c} \left\langle \mathrm{Tr}\left[U\left(R_{\perp}\right)U^{\dagger}\left(R_{\perp}'\right)\right]\right\rangle_x \,, \end{split}$$



- Quadrupole ⇒ Weizsäcker Williams gluon distribution;
- Dipole ⇒ Color Dipole gluon distribution;
- Generalized universality in the large N<sub>c</sub> limit in ep and pA collisions
   ⇒ Effective dilute dense factorization.



#### A Tale of Two Gluon Distributions

In terms of operators, we find these two gluon distributions can be defined as follows:

I. Weizsäcker Williams gluon distribution: II. Color Dipole gluon distributions:



#### Questions:

• Modified Universality for Gluon Distributions:

|                    | Inclusive | Single Inc | DIS dijet | $\gamma$ +jet | g+jet     |
|--------------------|-----------|------------|-----------|---------------|-----------|
| $xG_{WW}$          | ×         | ×          |           | ×             | $\sqrt{}$ |
| $xG_{\mathrm{DP}}$ |           |            | ×         |               | $\sqrt{}$ |

$$\times \Rightarrow$$
 Do Not Appear.  $\sqrt{} \Rightarrow$  Apppear.

• Two fundamental gluon distributions which are related to the quadrupole and dipole amplitudes, respectively.

### Dihadron correlations in dAu collisions

$$C(\Delta\phi) = rac{\int_{|p_{1\perp}|,|p_{2\perp}|} rac{d\sigma^{pA
ightarrow h_1h_2}}{dy_1dy_2d^2p_{1\perp}d^2p_{2\perp}}}{\int_{|p_{1\perp}|} rac{d\sigma^{pA
ightarrow h_1h_2}}{dy_1d^2p_{1\perp}}} \quad J_{dA} = rac{1}{\langle N_{
m coll}
angle} rac{\sigma_{dA}^{
m pair}/\sigma_{dA}}{\sigma_{pp}^{
m pair}/\sigma_{pp}}$$



- Comparing to STAR and PHENIX data
- Physics predicted by [C. Marquet, 09].
- Further calculated in [Marquet, Albacete, 10; Stasto, BX, Yuan, 11]
- Physical picture: de-correlation of dijets due to dense gluonic matter.



# Dijet production in DIS

#### [L. Zheng, E. Aschenauer, J. H. Lee and BX, 14]



#### Remarks:

- For back-to-back correlation  $|k_{1\perp}| \simeq |k_{2\perp}| \gg q_{\perp} = k_{1\perp} + k_{2\perp}$ .
- Unique golden measurement for the Weizsäcker Williams gluon distributions.
- EIC will provide us perfect machines to study gluon fields inside protons/nuclei.



#### Evolutions: TMDs vs UGDs

#### Evolutions are effectively resumming large logarithms:

• TMDs evolve with the CSS equation which resums Sudakov logarithms

$$\left[\frac{\alpha_s C_R}{2\pi} \ln^2 \frac{Q^2}{k_\perp^2}\right]^n + \cdots, \quad \text{with} \quad Q^2 \gg k_\perp^2$$

• UGDs follow the small-x evolution equations, such as BK or JIMWLK which resums

$$\left[\frac{\alpha_s N_c}{2\pi} \ln \frac{1}{x}\right]^n, \quad \text{with} \quad x = \frac{Q^2}{s} \ll 1$$



### Sudakov resummation in saturation formalism

One-loop Calculation for Higgs, Heavy-Quarkonium and Dijet processes ⇒ Sudakov factor in saturation physics. [A. Mueller, BX and F. Yuan, 13; P. Sun, J. Qiu, BX, F. Yuan, 13]



- Multiple scales problem.  $k_{\perp}^2 \ll Q^2 \sim M^2 \ll s$ .
- Joint Small- $x \left[ \frac{\alpha_s N_c}{2\pi} \ln \frac{1}{x} \right]^n$  resummation and Sudakov factor  $\left[ \frac{\alpha_s C_R}{2\pi} \ln^2 \frac{Q^2}{k_\perp^2} \right]^n$  resummation.
- [Balitsky, Tarasov, 14] Starting from the same operator definition,  $xG_{WW}$ : TMD (moderate  $x \sim \frac{Q^2}{s}$ ) and W.W. (small-x, high energy with fixed  $Q^2$ ). Unified description of the TMD and small-x UGD.
- [Marzani, 15]  $Q_T$  resummation and small-x resummation.
- Evolution issue resolved.



### Summary



- Towards unification of TMD physics and small-x physics.
- EIC will provide us the unprecedented 3D tomography of protons/nuclei.
- Gluon saturation could be the next interesting discovery at the future EIC.



# Other Topics and Progresses

#### The incomplete list of Other Topics and Progresses:

- Linearly polarized gluon at EIC.
  - [Mulders, Rodrigues, 01]
  - [Boer, Brodsky, Mulders, and Cristian Pisano, 10; A. Metz and J. Zhou, 11; etc]
- Gluon Sivers function at EIC.
  - [M. Diehl et al, INT report; L. Zheng, et al, in preparation]
  - [Review: Boer, Lorce, Pisano, Zhou, 15]
- Spin effects in small-*x* approaches.
  - [Kovchegov, Pitonyak, Sievert...]
  - [Boer, Echevarria, Mulders, Jian Zhou, 15]

